
01

Cyber Risk Resources for Practitioners

Cyber Risk Resources for Practitioners

Building a secure
system: Why do
we need to do it?
How do we get it?
And where should
we start?

www.theirm.org www.cgi.com

Extract from ‘Cyber Risk: Resources for Practitioners’
published by the Institute of Risk Management 2014.

CGI

Paul Hopkins
Cyber Security
Technical Authority
paul.hopkins@cgi.com

Wendy Holt
Strategy &
Innovation Director
wendy.holt@cgi.com

3Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system

03

Building a secure system

Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners02

It’s not surprising that, given this rich stack of
technology, (security) issues might arise either
through the complexity of the application being
assembled or through delivery pressure.

Abstract:
Whether an organisation builds software
itself, integrates third parties or just
procures a solution, the risks of a poorly
secured system will ultimately have a
significant impact on the business. Secure
systems engineering, is not something
that usually gets prioritised against the
need to get to market quickly or reduce
costs, unless of course the business truly
understands the risks.

This chapter covers the risks arising from
poor security engineering. We look at the
potential impact on the business, what
steps can be taken to mitigate these and
therefore what questions all risk managers
should be asking their internal and external
architects and developers, highlighting the
potential impact of software development
methods such as AGILE on secure
development methodologies.

Insecure Systems –
Bad for business?
You only have to read about the increasing
number of publicly quoted data breaches
to see that an insecure system is not
good for business. If you fail to keep your
customers’, or your organisation’s, data
confidential and available then potentially
the consequences could be serious. The
organisation could face a huge fine
(e.g. TJ Maxx [8]), it could lose customers,
it could get swallowed up by the competition
(e.g. HBGary [7]) or it could contribute
to the Company going out of business
(e.g. Nortel [9]).

Not all of the publicly quoted examples
above are just the result of an insecure
system design and build, indeed social
engineering of employees (alongside other
factors) contributed to the end result.
However, at the end of the day, the systems
were compromised and exploited due to
weaknesses in the overall system design
that were not adequately assessed at the
outset by the system designers.

It is possible you may be fortunate enough
not to have your business put at risk as a
consequence of a security breach. However,
it is likely that the cost and difficulty of
fixing the issues once discovered are
substantially more than identifying and
mitigating the issues earlier in the system
development process. For a start, the
problem may be within a third party
component and it might not be possible
to fix it directly yourself without their
help. Alternatively the flaw may be in your
software or technology so you might have
the ability to directly address the problem.
However, the problem may not be as simple
as re-coding a file, e.g. it may be that the
database you originally selected for its
fast handling of queries has no way to
adequately separate user data and therefore
requires a new database technology! So,
the scale and variation of the problem to
be addressed once discovered can vary
from quite minor to very significant, and
that’s without considering the additional
operational impacts while you fix the
problem (such as increased monitoring).

Building a secure system: Why do we
need to do it? How do we get it?
And where should we start?
Paul Hopkins, CGI

Secure Systems –
Why it’s hard
Securing systems is not trivial. An operating
system has tens of millions of lines of code,
a database server or a web server can
contain several millions of lines of code.
The software is resident on a complex
mesh of servers, network infrastructure
and multiple protocols on top of which the
actual application is built that delivers the
services which differentiate the organisation
and provides value to your customers.
So it’s not surprising that, given this rich
stack of technology, some ‘issues’ might
arise either through the complexity of the
application being assembled or through
delivery pressures.

Unfortunately, such issues can quickly
become security vulnerabilities. You only
have to examine a number of prolific
security industry reports [1], [4] to see
that there are substantial numbers of

vulnerabilities reported in web applications
and enterprise software annually. There
are also fewer but substantially higher
impact year on year increases affecting
software within technologies such as
mobile platforms or Industrial Controller
Equipment (SCADA). Of particular interest
are reports which correlate vulnerabilities
from internet facing web applications across
a variety of industry sectors. In these we
find common serious security issues, with
one study [1] citing that 53% of all systems
scanned contained a vulnerability that was
potentially exploitable. Whereas a separate
study of different applications [5] showed
that 86% of the websites contained at
least one serious flaw. So, if you take into
account that such scans often check only
for the ‘known’ bugs and flaws, then the
question remains how many more latent
security bugs and flaws that are not yet
known are within such applications?

5Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system

05

Building a secure system

Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners04

The form of the requirements need not be
a pure specification document; indeed in
previous projects CGI has found potential
use cases or more precisely misuse/abuse
cases have been helpful in communicating
with system architects and developers the
threats and risks to the system. The benefit
is that the architects and designers clearly
understand why they are implementing
security controls and their relationship to
the threats to the system rather than see
them as annoyances that get in the way
of implementing the business solution.
Communication and collaboration
between the business users, developers
and security experts is essential to get the
requirements understood and implemented
as they are intended, rather than wait for
disappointment at the end of the project.

With the requirements documented and
an understanding of the application risk,
the processes to be applied to the system
development including the quality/security
review gates can be defined and the next
stage can be entered, which is to review
the initial design.

Security Requirements

Plotting the journey
Clearly articulated security requirements
are the starting point for any secure system
development. These security requirements
have to be related back to the actual system
required by the business and its risk profile,
and so are dependent upon the initial risk
assessment for a system (or application),
the threats, the potential vulnerabilities
and the true impact to the business of the
failure. This enables the subsequent secure
development process to be tailored relative
to the risk profile for the system, with the
appropriate steps, quality and review gates.

If security requirements are going to be
useful for subsequent development, then
they need to be specific and not general
statements such as “the application must
authorise all users”. It is far better to help
the developers and designers with “the
application must authorise users using the
username, Memorable Word and PIN code”.
The requirement can then be further refined
to constrain the subsequent functionality
so that “each (web) page must check that
a user’s session is valid” and the “default
behaviour is to deny access to all (web)
pages without a valid session”. Typically,
this is not a quick exercise but elements
can be re-used and their relationship to
the business risks justifies their inclusion.

How can it be
made secure?

The journey
The challenges of system complexity,
pace of delivery and technology
integration are not new to many
organisations and development projects.
Nevertheless, a number of organisations
have successfully established secure design
and development lifecycles as part of a
prolific corporate commitment to reduce
vulnerabilities within their products [14]
[15][16]. The lessons learned from these
and other programmes have resulted in an
increase in the techniques and guidance
for secure design and development, with
a corresponding improvement in secure
systems [17] for those organisations that
embed these techniques.

The following sections outline some of
the key steps that should be used to
secure systems.

A number of
organisations
have successfully
established secure
design and
development
lifecycles.

7Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system

07Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners06

Building a secure system

Architecture Checklist:
1.	� Independently analyse the system

design against specific threat or attack
patterns. Microsoft’s STRIDE is one
such generic pattern frequently used
to stimulate that process, but it’s also
important to look at the specific threat
patterns within your industry, e.g. for
banking and retail applications the ‘man
in the browser attacks’.

2.	� Look at the technologies used and
understand where there may be
incompatibilities, particularly with
security controls such as cryptographic
libraries/APIs and access control.
Alternatively, as is the case for mobile
development, the design may be
considering using common functionality
to develop applications (HTML5/
Javascript) that may undermine the
security on specific platforms. Or it may
use the specific mobile platform toolkit
that may initially make the design
stronger, but will need any operational
platform patching to be carefully
considered to avoid applications on one
platform being patched while there is
lag in fixing the other platforms.

3.	� Understand and capture how the
architecture is built up. How and
where the important data flows and is
stored? Where the security controls are
placed? What assumptions are being
made at the network, in the operating
system, in the application (and its
software stack of libraries/frameworks)
and what assumptions are we making
about the user and their environment.

A second issue is the assumption about the
number and frequency of vulnerabilities
that may be latent within the libraries and
frameworks that you use as part of your
system. For example, a recent study by an
application security company [3] found that
37% of the most popular frameworks and
libraries (used primarily for building web
based applications) contained at least one
vulnerability. Possibly more disconcerting
was that 26% of all (29.8 million) library
downloads contained those vulnerabilities.
This problem is increasingly likely in mobile
devices where libraries, such as Webkit,
have been shown to contain serious flaws
affecting the integrity of a number of
mobile (browsers) and subsequently the
devices themselves.

A third security issue is the introduction of
malicious code into the system or where
perhaps that application becomes malicious
(i.e. once deployed). Mobile applications
often have integrated (via a Software
Development Kit) connection to advertising,
in order to generate revenue. Unfortunately,
some such benign apps have also been
discovered to connect back into a malicious
ad network (such as BadNews [13], [10])
that will serve up malware potentially
compromising the customer’s device.

Fortunately, there are a number of steps
that the system designers should be going
through at this stage to avoid such failures.

Take for example the hospital software
that pulls together a patient’s records
from different hospital departments with
some records on file systems and others
in databases. Here the designer has to
carefully define the complex security
rules (e.g. based on the user’s role, the
doctor’s and patient’s permission), how the
application code implements these rules
and also how those ‘permissions’ translate
across the technology tiers: the database,
operating system file systems and networks.
If the security is only implemented within
the application then the users may just
navigate around it and directly access the
records on the server. If it is at too low a
level, such as within the network, then
you won’t be able to enforce complex
security policies.

In which layer do we trust?
Systems are composed of multiple software
layers, often dependent upon the others
for certain functions, including security.
Assumptions about these layers and about
how they will be configured or used can
often undermine the overall system security.

One such security issue, that’s frequently
proven to be problematic, is the use of
cryptographic libraries (such as TLS/SSL) [2].
A recent study [11] on an Android platform
demonstrated the inadequate ‘certificate’
checking by banking applications (amongst
other applications) to validate and setup a
secure channel between the device and the
organisation’s application, leaving the users
vulnerable to interception1.

Architectural Design

Picking the right road
Imagine this example, you are playing
an online lottery game, you choose your
numbers and you submit your bet then
wait for the return of the results after a
defined time period. You and the other
customers are then presented with the
winning numbers and you find out you’ve
lost or you’ve won! More frequently you’ve
lost. However, what if you noticed that the
winning numbers were returned to your
browser a few seconds before you were
presented with the result and what if you
found that if you re-submitted the bet with
those returned results (very quickly after
receiving the results) that you could change
your numbers to the winning numbers and
thereby win?

Actually this example was real but has long
since been fixed and was an original flaw in
the design of a gaming application. Yet it
was also probably one of the simplest flaws
where the designers incorrectly trusted
the client (browser) with sensitive data in
addition to not closing the lottery session
before transmitting the numbers to the
customers.

Unfortunately, such design issues are not
always so simple and indeed not that easy
to fix. The design issues can be caused by
incompatible technologies or alternatively
incorrect assumptions about the
environment in which they will be working.

More
disconcerting
was that
26% of all
(29.8 million)
library
downloads
contained
vulnerabilities.

1 �In reality such an attack also requires the subversion of some of the components of the network infrastructure
between the user and the application (such as on a wireless network), but then the server certificates were used
as a secondary protection mechanism to ensure only the authentic application is being communicated with.

9Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system

09Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners08

Building a secure system

3.	� Train and give the developers access to
both security testing tools (e.g. those
used to test and manipulate protocols
and application input) as well source
code analysis tools for potential security
flaws. Some of the analysis tools can be
run outside of working hours to reduce
the downtime for development.

4.	� Ensure that the team has a security
champion within it, someone who is
prepared to mentor (and train) other
team members, help resolve security
questions and share best practice/
lessons learned.

5.	� Use the output of automated tools (or
third party services – including those
embedded within mobile app stores)
such as source code analysis to look
for common recurring problems that
might indicate that developers don’t
fully understand certain issues and use
this to focus the ongoing training and
sharing of best practice.

one potential development issue, there
are also many other types associated with
web applications (Cross Site Scripting
(XSS), broken authentication mechanisms,
forced browsing etc), with databases (SQL
injection), within the code in operating
systems (such a buffer overflow, race
conditions).

However, unlike the earlier design flaws,
these programming errors can be more
readily addressed during the development
process by the programmer, as long as they
are provided with the right tools, process,
standards and training.

Development Checklist:
1.	� Coding standards have been defined

and the code is checked to ensure
it adheres to those standards and
is understandable for maintenance
purposes. Automated tools can be
used to check code against the defined
standard (e.g. checkstyle).

2.	� Train the developers to write secure
code, by understanding common
attack patterns, such that they validate
and sanitize input or use trusted
security APIs from organisations such
as OWASP. For instance there are
increasingly good guidelines for mobile
application development from both
the manufacturer (e.g. Apple) and
governments (CESG [12]).

Develop & Test

Avoiding damage along the way?
Returning back to our previous online
gambling example, imagine that the flaw
has been fixed and instead of winning
you find yourself losing every time and the
account balance dwindles away. However,
what if now you were allowed to submit
varying amounts of money for each bet
and instead of betting positive values you
entered negative numbers? You might be
surprised to find that another real (but now
fixed) application instead of debiting your
account every time you lost, credited the
balance by the same (negative) number bet,
thereby increasing the account balance!

While this could arguably be considered
to be a logical flaw, it demonstrates one
of the most basic security mistakes made
by developers – essentially “trusting the
input”. Indeed many of the most serious
vulnerabilities discovered in systems
software are caused by trusting input, be
that from a user, another application or a
network protocol/packet. But this is only

We might suppose that our corporate
environment is free from hardware or
network level attacks but you only have
to look at recent news reports of such
attacks on retailers and banks [6] to
realise that we may need to check that
assumption.

4.	� Verify and understand the design and
assurance of all the components. How
have they been developed? How have
they been validated or tested? And
how are they being used? For example,
have you tested the applications
and components according to your
standards? Do they have any third
party assurance (and what confidence
does that give?). As per the previous
examples do our developers understand
the risks, issues and mitigations and are
they using the APIs or applications in
the right way?

5.	� What is the provenance of the
components and applications?
Understand how the components to
be used have been or will be built. Will
you be able to understand who has had
access to the code? For example, has
the code been hosted on a potentially
insecure public cloud with limited
auditing and weak access controls to
the code? Have they been developed,
tested and managed in a way that we
know is free from tampering?

11Cyber Risk Resources for Practitioners10 Cyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system

Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners 1110

Building a secure system

Creating a security culture is not an easy
thing to achieve, especially if you have a
diverse or large geographically distributed
organisation. However, CGI has found the
focusing on the following steps helps:

1.	� Getting buy in from senior stakeholders
early and clearly articulating the benefits
to them.

2.	� A clear message from the senior
stakeholders disseminated to the rest
of the organisation.

3.	� Focused training for developers (on
security vulnerabilities/common patterns
and security test tools).

4.	� Giving frequent feedback to the
developers and using it to refine the
training of the existing development
or next generation team so that the
lessons learnt are not lost. Be careful to
capture and manage this knowledge
with incoming or new suppliers and
teams otherwise you may find yourself
starting from scratch all over again.

5.	� Giving frequent feedback and
communicating with the rest of the
‘development’ team on the security
progress. The benefits and successes,
such as the number of bugs and
flaws avoided through design and
development reviews and testing.

6.	� Include security in reporting
mechanisms. Staff and managers
will always respond to what they
are measured on.

Security Culture & Skills:

Setting the tone
Developing the skills and security culture is
one of the most important activities needed
to develop a secure system. All of the
people involved in building the system must
believe that a secure system is worthwhile,
and not only will it protect the business
and the customers, but also they must have
the right skills and training to achieve it.
It is also something that must be right at
the inception, throughout the project and
long after it is completed and embedded
into the team.

So far in this chapter the focus has been
on designers and developers, yet in reality,
when it comes to constructing a system,
we need to know that many of the roles
involved (e.g. project managers, contracts,
business managers) all believe in the value
of the steps outlined. Otherwise they
may be tempted to trade-off without
understanding the implications – “early
delivery rather than compete security
testing” or “choose not to check third
party secure development practices before
purchasing for cost reasons” or “perhaps
not check the identity of all users in the
interests of usability”.

Third party software should be of particular
focus as it may itself contain bugs or be
incorrectly configured when used with
the rest of the application stack. Unlike
the code the organisation has developed,
it may not have been subject to an
architectural review and constant testing
while in development. Additionally, it may
require testing for the presence of malicious
applications or software as per the earlier
mobile example [13].

Particularly for mobile applications, the
security testing should be supplemented
with additional steps to review the open-
source meta-data about the application and
developer (i.e. to establish how trustworthy
they are). This should be followed by a
local analysis of how the data and device
capabilities accessed, along with a source
code and network analysis.

In most instances, an independent team of
testers best perform this step. The broader
the experiences of the security testing team
(within and outside of your industry sector)
the better the testing result.

Assurance

Ready to proceed?
So you’ve articulated your security
requirements and you’ve translated them
into a security architecture. You’ve then
developed the system (encouraging the
developer to use security testing and source
code analysis tools) during the development
process. The last stage is to focus on the
real world security testing, where the
application or system has been integrated
and all of the components in the system
must be tested together to check that the
security controls work.

This includes creating tests based on:

a)	� The original security requirements e.g.
does the application stop us browsing
to another users bank account summary
when we aren’t authenticated?

b)	� Common security issues e.g. does the
application stop us injecting commands
into the application to extract from or
put information into the database?
Has the data been stored in the mobile
device using encryption?

c)	� Specific applications or specially
developed security controls e.g. does
the system interface work with the
cryptographic module/library correctly
and does it handle and present the
challenge/response for the pin pad
correctly?

Developing
the skills and
security culture
is one of the
most important
activities
needed to
develop a
secure system.

13Cyber Risk Resources for Practitioners12 Cyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system Building a secure system

Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners 1312

The key ingredient is ensuring that you have
established the secure development practices as
being relevant and ‘alive’ within the organisation.

•	�You have gained and continue to receive
support from the management and
organisation (based on improved security
results! – remember to measure).

•	�You have focused on your organisation’s
needs (the technologies used, the supply
chain/partners, the agility needed)
and most importantly the risk the
organisation is prepared to accept.

However, the key ingredient to all of this
is ensuring that you have established the
secure development practices as being
relevant and ‘alive’ within the organisation:

•	�You have established and defined
the development process so that it is
repeatable, constantly improving and
adapting to the business.

However, the key to establishing any secure
development is still to get user buy-in and
appropriate prioritisation of these activities
by the team.

Final Thoughts
Based on CGI’s experiences there is no
quick route to building a secure system.
However, as CGI and many other
organisations have found, by focusing
on the key steps within this chapter, you
can significantly increase the chances you
will achieve a secure system and may also
decrease the overall cost of development.

The security requirements are the starting
point, linked to the enterprise risks and
threats from which a system can be
developed. These requirements need to
be proportionate and relevant to the risk,
e.g. a mobile application can have a very
different set of requirements to that of an
internal facing web application.

Eliminating significant flaws during the
design or architectural review stages
ensures you don’t face ‘insurmountable’
security problems once the system is
deployed or just prior to deployment.
By contrast, the secure development
practices and independent security testing
should enable the development team to
produce a quality product with minimal
bugs that are also less costly to fix once
a system is ‘live’ and with customers.

Changing Landscape
Increasingly, for many organisations, the
software development lifecycle has been
compressed and changed from what were
once monthly cascading (or waterfall)
phases to now weekly updates with daily
stand-ups and an iterative and rapid
software development (AGILE) process.

A number of organisations have needed
to adopt AGILE to increase the pace of
development for the organisation and
have integrated the security lifecycle
steps presented earlier in the chapter. For
example, while some AGILE processes are
well suited to integrating security, such
as the code development phase with its
rapid development and iterative testing, by
contrast the architecture analysis can seem
at odds with the iterative nature of AGILE.
The reality is that design reviews and code
clean-up need to be added to the backlog
to become part of scheduled sprints. Of
course in order to get these activities
onto the backlog, you still have to use the
user stories to develop and articulate the
security requirements, either by establishing
them around the functionality required
or alternatively as a constraint upon that
functionality. Requirements particularly
need to be given sufficient priority so that
they don’t fall below the achievement line
of each sprint. Given the rapid nature,
individual sprints must focus on completing
the most relevant parts of the previously
described steps (e.g. design review, testing,
code analysis) rather than attempt to
tackle all of the steps within one sprint.

1 Do you follow a defined process to build secure systems? Have you defined the
appropriate review/quality gates?

2 Do you have the support of senior management, Project Managers, Contracts
and Developer teams for a secure development process?

3 Do your suppliers understand and support this process?

4 Do you regularly and clearly identify the realistic threats and risk to system data
and functionality?

5 Have you provided clear security requirements that can be tested against?

6 Have you independently reviewed the architecture? What threats have been
modelled? Do you understand how the system protection works across all
technology? What assumptions have been made about the environment and
ongoing operations/maintenance/customer interaction with the system?

7 How have you developed the code? Have you defined secure coding standards?
Have you trained your development teams to understand the key risks and threats
and how to protect against them? Have you given them security testing tools and
source code analysis tools to check for problems?

8 Do you conduct independent testing that simulates real-world attacks?

9 Do you measure and feedback regularly the results and lessons learnt from testing
and source code analysis into developer training?

10 Are you developing the right skills and culture to consistently build secure systems?
Do you have the right security champions in place?

 Top 10 questions to ask of your organisation:

15Cyber Risk Resources for Practitioners14 Cyber Risk Resources for Practitioners

C
h

a
p

t
e

r
 1

2

C
h

a
p

t
e

r
 1

2

Building a secure system Building a secure system

Cyber Risk Resources for PractitionersCyber Risk Resources for Practitioners 1514

7.	� Anonymous speaks: the inside story
of the HBGary hack; Ars Technica;
February 2011; http://arstechnica.
com/tech-policy/2011/02/
anonymous-speaks-the-inside-story-
of-the-hbgary-hack/

8.	 �TJX, Visa Agree to $40.9 Million Payout
for Data Breach; BankInfoSecurity;
http://www.bankinfosecurity.
co.uk/tjx-visa-agree-to-409-million-
payout-for-data-breach-a-648

9.	 �Chinese Hackers Suspected In Long-
Term Nortel Breach; Wall Street Journal;
February 2012; http://online.wsj.
com/news/articles/SB100014240529
70203363504577187502201577054

10.	�Bad News for Android as Fake Ads
Target Google play; Mobile World
Live; April 2013; http://www.
mobileworldlive.com/badnews-
for-android-as-fake-ad-network-
targets-google-play

11.	�Attackers can slip malicious code
into many Android apps via open
Wi-Fi; ArsTechnica; Sept 2013;
http://arstechnica.com/
security/2013/09/attackers-can-slip-
malicious-code-into-many-android-
apps-via-open-wi-fi/

References
1.	� 2013 Internet Security Threat Report,

Volume 18; http://www.symantec.
com/content/en/us/enterprise/
other_resources/b-istr_main_report_
v18_2012_21291018.en-us.pdf

2.	 �The Most Dangerous Code in the
World: Validating SSL Certificates in
Non-Browser Software; M. Georgiev
et al; 2012; http://www.cs.utexas.
edu/~shmat/shmat_ccs12.pdf

3.	� The Unfortunate Reality of Insecure
Libraries; Aspect Security; March
2012 http://cdn1.hubspot.com/
hub/203759/docs/Aspect-Security-
The-Unfortunate-Reality-of-
Insecure-Libraries.pdf

4.	� HP 2012 Cyber Security Risk
Report; 2012; http://www.
hpenterprisesecurity.com/
collateral/whitepaper/
HP2012CyberRiskReport_0213.pdf

5.	� https://info.whitehatsec.com/
2013-website-security-report.html

6.	� Scammers bug retail registers
with $40 keylogger devices; SC
Magazine; October 2013;
http://www.scmagazine.com/
scammers-bug-nordstrom-registers-
with-40-devices-to-skim-card-data/
article/316001/

12.	�End User Application Security
Guidance for iOS; CESG, November
2013; https://www.gov.uk/
government/publications/end-
user-devices-security-guidance-
apple-ios-application-development/
end-user-devices-security-guidance-
apple-ios-application-security-
guidance

13.	�“Mobile Devices = New Malware and
New Vectors”; Palo Alto Networks;
August 2013; http://researchcenter.
paloaltonetworks.com/2013/08/
mobile-devices-new-malware-and-
new-vectors/

14.	�Cisco Secure Development Lifecycle;
Cisco; Retrieved November 2013;
http://www.cisco.com/web/about/
security/cspo/csdl/index.html

15.	�Oracle Software Security Assurance;
Oracle; Retrieved November 2013;
http://www.oracle.com/us/support/
assurance/overview/index.html

16.	�Microsoft Security Development
Lifecycle; Microsoft; Retrieved
November 2013; https://www.
microsoft.com/security/sdl/
default.aspx

17.	�The Trustworthy Computing Security
Development Lifecycle. The Benefits;
Microsoft; March 2005; http://
msdn.microsoft.com/en-us/library/
ms995349.aspx#sdl2_topic4

Do you measure
and feedback
regularly the
results and lessons
learnt from testing
and source code
analysis into
developer training?

Cyber Risk Resources for Practitioners

16 Cyber Risk Resources for Practitioners

QUOTE HERE
***of were
avoidable and
it is suggested
that inadequate
attention to the
risks may have
contributed
to potential
breaches being
overlooked.

Risks

C
hapter 16: M

anaging Business O
pportunities and Inform

ation Risks
‘‘You only have to read

about the increasing
number of publicly
quoted data breaches
to see that an insecure
system is not good
for business.“

